Cheat sheet

SI-Units

  • Base Units
Dimension \(\mathrm{T}\) \(\mathrm{L}\) \(\mathrm{M}\) \(\theta\) \(\mathrm{N}\) \(\mathrm{I}\) \(I_v\)
Unit \(\mathrm{s}\) \(\mathrm{m}\) \(\mathrm{kg}\) \(\mathrm{K}\) \(\mathrm{mol}\) \(\mathrm{A}\) \(\mathrm{K}\)
  • Derived units
\(\mathrm{Hz}\) \(\mathrm{s}^{-1}\)
\(\mathrm{N}\) \(\mathrm{kg} \, \mathrm{m} \, \mathrm{s}^{-1}\)
\(\mathrm{Pa}\) \(\mathrm{N} \, \mathrm{m}^{-2}\)
\(\mathrm{J}\) \(\mathrm{N} \, \mathrm{m}\)
\(\mathrm{W}\) \(\mathrm{J} \, \mathrm{s}^{-1}\)

Characteristic numbers

Reynold number Re \(\dfrac{\rho \, v \, L}{\nu}\)
Froude number Fr \(\dfrac{v}{\sqrt{gh}}\)
Shallowness parameter \(\epsilon\) \(\dfrac{H}{L}\)
Peclet number Pe \(\dfrac{L v}{\alpha}\)
Prandtl number Pr \(\dfrac{\nu}{\alpha}\)
Stefan number Ste \(\dfrac{c_p \Delta T}{L}\)
Strouhal number Str \(\dfrac{f L}{v}\)
Mach number Ma \(\dfrac{v}{c}\)
Lewis number Le \(\dfrac{\alpha}{D}\)

Principles

  1. Material symmetry \[ \hat \sigma^{(\zeta)} (*) = \hat \sigma^{(\eta)} (* P). \]
  2. Material Isotropy \[ \hat {\sigma} (F) =\hat \sigma ( V \cdot Q) = \hat \sigma ( V \cdot Q \cdot P) = \hat \sigma ( V \cdot Q \cdot Q^T) = \hat \sigma ( V) \]
  3. Material objectivity \[ \sigma^{(\mathbf y)} = Q \cdot \sigma^{(\mathbf x)} \cdot Q^T \]
  4. Galilean invariance \[ \pmb{\zeta} = \mathbf{x} - \mathbf{v} t \]

Models

  1. Mass and momentum balance \[ \begin{aligned} \partial_t \rho + \nabla \cdot \left( \rho \mathbf v \right) &= 0 \\ \partial_t ( \rho \mathbf v ) + \nabla \cdot \left(\rho \mathbf v \otimes \mathbf v \right) &= - \nabla p + \nabla \cdot \pmb{\tau} + \rho \mathbf b \end{aligned} \]
  2. Incompressible Euler \[ \begin{aligned} \nabla \cdot \mathbf v & = 0\\ \partial_t \mathbf v + \mathbf v \cdot \nabla \mathbf v &= - \frac{1}{\rho}\nabla p + \mathbf b \end{aligned} \]
  3. Incompressible Navier-Stokes \[ \begin{aligned} \nabla \cdot \mathbf{v}&= 0 \\ \partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} &= - \frac{1}{\rho}\nabla p + \nu \triangle \mathbf{v} + \mathbf{b} \end{aligned} \]
  4. Incompressible Navier-Stokes in cylindrical coordinates \[ \begin{aligned} \frac{\partial u_r}{\partial t} + \left(\vec{u}\cdot \vec\nabla \right) u_r - \frac{u_\theta^2}{r} & = -\frac{1}{\rho} \frac{\partial p}{\partial r} + \nu \left(\nabla^2 u_r - \frac{u_r}{r^2} - \frac{2}{r^2} \frac{\partial u_\theta}{\partial \theta}\right) \\ \frac{\partial u_\theta}{\partial t} + \left(\vec{u}\cdot \vec\nabla \right) u_\theta + \frac{u_r u_\theta}{r} & = -\frac{1}{\rho r} \frac{\partial p}{\partial \theta} + \nu \left(\nabla^2 u_\theta + \frac{2}{r^2} \frac{\partial u_r}{\partial \theta} - \frac{u_\theta}{r^2} \right) \\ \frac{\partial u_z}{\partial t} + \left(\vec{u}\cdot \vec\nabla \right) u_z & = -\frac{1}{\rho} \frac{\partial p}{\partial z} + \nu \nabla^2 u_z \\ \frac{1}{r} \frac{\partial}{\partial r} \left( r u_r \right) + \frac{1}{r} \frac{\partial u_\theta}{\partial \theta} + \frac{\partial u_z}{\partial z} & = 0 \end{aligned} \]
  5. Heat equation \[ \partial_t T + \nabla \cdot \left( T \mathbf{v} \right) = \alpha \Delta T \]
  6. Incompresisble Navier-Stokes-Boussinesq-Fourier \[ \begin{aligned} & \nabla \cdot \mathbf{v} = 0 \\ & \partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} = - \frac{1}{\rho_0} \nabla \left( p - \rho_0 g z \right) + \nu \Delta \mathbf{v} - \mathbf{g} B \left(T-T_0\right) \\ & \partial_t \left(\rho c_p T \right) + \nabla \cdot \left( \rho c_p T \mathbf{v} \right) = \nabla \cdot \left( \kappa \nabla T \right) + \mathbf{S} \end{aligned} \]

Closure Relations

  1. Reiner-Rivilin fluid \[ \pmb{\tau} = \lambda \, \mathrm{tr} ( \mathbf{D}) \mathbf{I} + 2 \eta \mathbf{D} + \kappa \mathbf{D}^2 \]
  2. Newtonian fluid \[ \pmb{\tau} = \lambda (\nabla \cdot \mathbf v) \mathbf I + \eta \left( \nabla \mathbf v + \nabla \mathbf v^T \right), \]
  3. Hooke’s law \[ \pmb{\sigma} = \lambda \mathrm{tr} (\mathbf{D}) \mathbf{I} + 2 \mu \mathbf{D}, \]
  4. Boussinesq approximation \[ \rho = \rho_0 (1-B(T-T_0)) \]
  5. Stefan condition \[ \rho_s L \partial_t X_m(t) = \kappa \partial_x T (X_m^{-}(t),t) - \kappa \partial_x T (X_m^{+}(t),t) \]

Miscellaneous

  1. Shape factor \[ \alpha = \frac{\overline{u^2}}{\overline{u}^2}, \; \text{where} \; \bar \ast = (1/h) \int_b^s \ast \,dz \]
  2. Decomposition of the velocity profile \[ \mathbf{v}(\mathbf{x} + \mathbf{r}) = \mathbf{v}(\mathbf{x}) + \mathbf{w} \times \mathbf{r} + \mathbf{D} \cdot \mathbf{r} \] \[ \text{where} \;\; \mathbf{w} = \frac{1}{2} \nabla \times \mathbf{v}, \; \mathbf{D} = \frac{1}{2} \left( \nabla \mathbf{v} + \nabla \mathbf{v}^T \right), \; \mathbf{W} = \frac{1}{2} \left( \nabla \mathbf{v} - \nabla \mathbf{v}^T \right) \]
  3. Cylindrical coordinate transformation rules \[ \begin{aligned} \nabla f & = \frac{\partial f}{\partial r } \vec{e}_r + \frac{1}{r} \frac{\partial f}{\partial \theta} \vec{e}_\theta+ \frac{\partial f}{\partial z} \vec{e}_z, \\ \nabla \cdot \vec{A} & = \frac{1}{r}\frac{\partial}{\partial r }(r A_r) + \frac{1}{r} \frac{\partial A_\theta}{\partial \theta} + \frac{\partial A_z}{\partial z} \\ \nabla \times \vec{A} & = \left(\frac{1}{r}\frac{\partial A_z}{\partial \theta}-\frac{\partial A_\theta}{\partial z}\right)\vec{e}_r+ \left(\frac{\partial A_r}{\partial z}-\frac{\partial A_z}{\partial r}\right)\vec{e}_\theta+\frac{1}{r}\left(\frac{\partial}{\partial r}(r A_\theta)-\frac{\partial A_r}{\partial \theta}\right) \vec{e}_z \end{aligned} \]
  4. Material derivative \[ \frac{D}{Dt} f = \partial_t f + \mathbf{v} \cdot \nabla f \]
  5. Error function \[ \begin{aligned} \text{erf} (x) := \frac{2}{\sqrt{\pi}} \int_0^x e^{-y^2} dy, \;\;\;\; &\text{erfc} (x) := 1 - \text{erf}(x)\\ \partial_x \text{erf} (C x) = \frac{2}{\sqrt{\pi}} C e^{-(C x)^2}, \;\;\;\; &\partial_x \text{erfc} (C x) = -\frac{2}{\sqrt{\pi}} C e^{-(C x)^2}\\ \end{aligned} \]